Note: There are 8 questions with total 126 points in this exam.

1. Let $\left\{x_{k}\right\}$ be a sequence defined recursively by $x_{1}=\sqrt{2}$, and $x_{k+1}=\sqrt{2+x_{k}}$, for $k=1,2, \ldots$.
(a) (10 points) Show by induction that (i) $x_{k}<2$ and (ii) $x_{k}<x_{k+1}$ for all k.

Solution: (i) When $k=1, x_{1}=\sqrt{2}<2$.
Assume that $x_{k}<2$. Then we have $x_{k+1}=\sqrt{2+x_{k}}<\sqrt{2+2}=2$.
Thus, the argument of induction implies that $x_{k}<2$ for all k.
(ii) Using (i) twice, we have $x_{k+1}=\sqrt{2+x_{k}}>\sqrt{x_{k}+x_{k}}=\sqrt{2} \sqrt{x_{k}}>\sqrt{x_{k}} \sqrt{x_{k}}=x_{k}$ for all k.
(b) (10 points) Show that $\lim _{k \rightarrow \infty} x_{k}$ exists and evaluate it.

Solution: The results of (a) implies that $\left\{x_{k}\right\}$ is an increasing sequence and it is bounded from above by 2. The Monotone convergence theorem implies that $\lim _{k \rightarrow \infty} x_{k}=x$ exists, and since $x=$ $\lim _{k \rightarrow \infty} x_{k+1}=\lim _{k \rightarrow \infty} \sqrt{2+x_{k}}=\sqrt{2+x}$, we have $0=x^{2}-x-2=(x-2)(x+1) \Longrightarrow x=2$.
2. (16 points) Let $S \subset \mathbb{R}^{n}$ and $\mathbf{x} \in \mathbb{R}^{n}$. Show that $\mathbf{x} \in \bar{S}$ if and only if there is a sequence of points $\left\{\mathbf{x}_{k}\right\}$ in S that converges to \mathbf{x}. [Hint: You may use the fact that the closure of S is the union of S and all its boundary points, i.e. $\bar{S}=S \cup \partial S$.]

Solution: (\Rightarrow) If $\mathbf{x} \in \bar{S}=S \cup \partial S$, then either
Case (i) : $\mathbf{x} \in S$, then the sequence $\left\{\mathbf{x}_{k}=\mathbf{x}\right\}$, for $k=1,2, \ldots$, is a sequence in S that converges to \mathbf{x}, or
Case (ii) : $\mathbf{x} \in \partial S$, then, there is an $\mathbf{x}_{k} \in B\left(\frac{1}{k}, \mathbf{x}\right) \cap S$, for each $k=1,2, \ldots$ satisfying that $\lim _{k \rightarrow \infty} \mathbf{x}_{k}=\mathbf{x}$.
(\Leftarrow) For each $\mathbf{x} \notin \bar{S}$, there exists an $r>0$ such that $B(r, \mathbf{x}) \subset \bar{S}^{\mathrm{c}}$. This implies there does not exist any sequence of points $\left\{\mathbf{x}_{k}\right\}$ in S that converges to \mathbf{x}.
Remark: This equivalence says that $S \cup \partial S=S \cup S^{\prime}$, where S^{\prime} denote the set of accumulation points of S.
3. (a) (10 points) Let $B(r, \mathbf{0})=\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\|<r\right\}$ be the ball of radius r about the origin. Show that $B(r, \mathbf{0})$ is open in \mathbb{R}^{n}.

Solution: For each $p \in B(r, \mathbf{0})$, we have $B(r-\|p\|, p) \subset B(r, \mathbf{0})$ since for each $y \in B(r-\|p\|, p)$ we have $\|y\| \leq\|y-p\|+\|p\|<r-\|p\|+\|p\|=r$, i.e. $y \in B(r, \mathbf{0})$.

Alternative proof: Since $\mathbf{0} \in B(r, \mathbf{0}) \subset B(r, \mathbf{0}), \mathbf{0}$ is an interior point of $B(r, \mathbf{0})$.
For each $p \in B(r, \mathbf{0}) \backslash\{\mathbf{0}\}$, by setting $\rho=\min \{\|p\|, r-\|p\|\}>0$, we have $B(\rho, p) \subset B(r, \mathbf{0})$ and conclude that p is an interior point of $B(r, \mathbf{0})$. Thus, $B(r, \mathbf{0})$ is open since each of its points is an interior point.
(b) (16 points) Show that if S_{1} and S_{2} are open, so are $S_{1} \cup S_{2}$ and $S_{1} \cap S_{2}$.

Solution: For each $p \in S_{1} \cup S_{2}$, since p is an interior point of S_{i}, for $\mathrm{i}=1$ or 2, there exists a $B(r, p)$, for some $r>0$, satisfying either $B(r, p) \subset S_{\mathrm{i}} \subset S_{1} \cup S_{2}$. Thus, p is an interior point of $S_{1} \cup S_{2}$, and $S_{1} \cup S_{2}$ is open.
For each $p \in S_{1} \cap S_{2}$, there exist $r_{1}, r_{2}>0$ such that $B\left(r_{1}, p\right) \subset S_{1}$, and $B\left(r_{r}, p\right) \subset S_{2}$. By taking $r=\min \left\{r_{1}, r_{2}\right\}>0$, we have $B(r, p) \subset S_{1} \cap S_{2}$, and conclude that $S_{1} \cap S_{2}$ is open.
(c) (8 points) Show that for any $S \subset \mathbb{R}^{n}, S^{\text {int }}$ is open.

Solution: For each $p \in S^{\text {int }}$, there is an $r>0$ such that $B(r, p) \subset S$. By (a), every point in $B(r, p)$ is an interior point of $B(r, p) \subset S$, hence, it is also an interior point of S. Thus, $B(r, p) \subset S^{\text {int }}$, and this implies that $S^{\text {int }}$ is open.
Alternative proof:The definition of an interior point says that $x \in S^{\text {int }}$ if there exists a ball $B(r, x) \subset S$. Therefore, if $x \notin S^{\text {int }}$, then either every ball centered at x intersects both S and $S^{\text {c }}$, or there exists a ball $B(r, x) \subset S^{\mathrm{c}}$, i.e. $x \in \partial S \cup\left(S^{\mathrm{c}}\right)^{\text {int }}$. Since $\partial S=\partial S^{\mathrm{c}}, \partial S \cup\left(S^{\mathrm{c}}\right)^{\text {int }}=\partial S^{\mathrm{c}} \cup\left(S^{\mathrm{c}}\right)^{\text {int }}$ is closed, $S^{\text {int }}$ is open.
4. (10 points) Let $\mathbf{f}: S \rightarrow \mathbb{R}^{m}$ be a function satisfying

$$
|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{y})| \leq C|\mathbf{x}-\mathbf{y}|^{\lambda} \quad \text { for all } \mathbf{x}, \mathbf{y} \in S,
$$

where $C>0$ and $\lambda>0$ are constants. Show that \mathbf{f} is uniformly continuous on S.

Solution: For each $\varepsilon>0$, since $|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{y})| \leq C|\mathbf{x}-\mathbf{y}|^{\lambda} \quad$ for all $\mathbf{x}, \mathbf{y} \in S$, we choose $\delta=\left(\frac{\varepsilon}{C}\right)^{1 / \lambda}$ such that if , $\mathbf{x}, \mathbf{y} \in S$ satisfying that $|\mathbf{x}-\mathbf{y}|<\delta$, then $|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{y})| \leq C|\mathbf{x}-\mathbf{y}|^{\lambda}<C \delta=\varepsilon$. Hence, \mathbf{f} is uniformly continuous on S.
5. (16 points) Show that $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is continuous (in the sense of ε - δ definition) if and only if for each open subset U in \mathbb{R}^{k} the set $f^{-1}(U)=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{f}(\mathbf{x}) \in U\right\}$ is open.

Solution: (\Rightarrow) Let U be an open subset in \mathbb{R}^{k} and p be a point in $f^{-1}(U)$. Given $\varepsilon>0$, since $B(\varepsilon, \mathbf{f}(p)) \cap U$ is open, there exists a ball $B(\eta, \mathbf{f}(p)) \subset B(\varepsilon, \mathbf{f}(p)) \cap U$, for some $\eta>0$. The continuity of \mathbf{f} at p implies that there is a ball $B(\delta, p)$, for some $\delta>0$, such that $\mathbf{f}(B(\delta, p)) \subset B(\eta, \mathbf{f}(p)) \subset$ $B(\varepsilon, \mathbf{f}(p)) \cap U \subset U$. This implies that $B(\delta, p) \subset \mathbf{f}^{-1}(U)$, and $\mathbf{f}^{-1}(U)$ is open .
(\Leftarrow) For each $p \in \mathbb{R}^{n}$, and each $\varepsilon>0$, since the set $B(\varepsilon, \mathbf{f}(p))$ is open in $\mathbb{R}^{k}, \mathbf{f}^{-1}(B(\varepsilon, \mathbf{f}(p)))$ is an open set containing p. There exists a $\delta>0$ such that $B(\delta, p) \subset \mathbf{f}^{-1}(B(\varepsilon, \mathbf{f}(p)))$, i.e. $\mathbf{f}(B(\delta, p)) \subset B(\varepsilon, \mathbf{f}(p))$, and \mathbf{f} is continuous at p.
6. (10 points) Suppose that $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous on $U \subset \mathbb{R}^{n}$ and $\mathbf{g}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ is continuous on $\mathbf{f}(U) \subset \mathbb{R}^{m}$. Show that the composite function $\mathbf{g}(\mathbf{f}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is continuous on U.

Solution: For each $p \in U$, and any $\varepsilon>0$, since \mathbf{g} is continuous at $\mathbf{f}(p)$, there exists $\delta_{1}>0$, such that if $y \in \mathbf{f}(U)$ satisfying that $|y-\mathbf{f}(p)|<\delta_{1}$, then $|\mathbf{g}(y)-\mathbf{g}(\mathbf{f}(p))|<\varepsilon$. Also, since \mathbf{f} is continuous at p, there exists a $\delta>0$, such that if $x \in U$ satisfying that $|x-p|<\delta$, then $|\mathbf{f}(x)-\mathbf{f}(p)|<\delta_{1}$ which implies that $|\mathbf{g}(\mathbf{f}(x))-\mathbf{g}(\mathbf{f}(p))|<\varepsilon$, i.e. the composite function $\mathbf{g}(\mathbf{f})$ is continuous at each $p \in U$.
7. (10 points) Let S be a compact subset of \mathbb{R}^{n} and let $\mathbf{f}: S \rightarrow \mathbb{R}^{m}$ be continuous at every point of S. Show that the image set

$$
\mathbf{f}(S)=\{\mathbf{f}(\mathbf{x}): \mathbf{x} \in S\}
$$

is also compact.

Solution: Suppose $\left\{y_{k}\right\}$ is a sequence in $\mathbf{f}(S)$. This implies that, for each k, there is an $x_{k} \in S$ such that $y_{k}=\mathbf{f}\left(x_{k}\right)$. Since S is compact, by the Bolzano-Weierstrass theorem, $\left\{x_{k}\right\}$ has a convergent subsequence $\left\{x_{k_{j}}\right\}$ that converges to a point $a \in S$. Since \mathbf{f} is continuous at $a, \lim _{j \rightarrow \infty} y_{k_{j}}=\lim _{j \rightarrow \infty} \mathbf{f}\left(x_{k_{j}}\right)=\mathbf{f}(a) \in$ $f(S)$. Thus, every sequence in $\mathbf{f}(S)$ has a subsequence whose limit lies in $\mathbf{f}(S)$. This implies that $\mathbf{f}(S)$ is compact.
8. (10 points) Let S be a connected subset in \mathbb{R}^{n}. Show that the closure of S is also connected.

Solution: Suppose that \bar{S} is disconnected and (U, V) is a disconnection of \bar{S}. Suppose that $U \cap S \neq \emptyset$ and $V \cap S \neq \emptyset$, then it is easy to see that $(U \cap S, V \cap S)$ is a disconnection of S. This contradicts to that S is connected. Therefore, either $U \cap S=\emptyset$, or $V \cap S=\emptyset$. Assume that $V \cap S=\emptyset$, since $S \cup \partial S=\bar{S}=U \cup V$, this implies that $V \subset \partial S$, and $U=S$. But, this implies that $\bar{U} \cap V=\bar{S} \cap V \neq \emptyset$ which contradicts to that (U, V) is a disconnection of \bar{S}. It is easy to see that $U \cap S=\emptyset$ will also lead to a contradiction. Therefore, \bar{S} is connected.
Note: (1) In general, the converse is not true. e.g. Let $S=[0,1) \cup(1,2)$. Then $\bar{S}=[0,2]$ is connected while S is not.
(2) A subset $A \subset S$ is said to be open relative to the set \mathbf{S} if there exists an open set $U \subset \mathbb{R}^{n}$ such that $A=U \cap S$.
The definition of connectedness of $S \Longleftrightarrow$ is equivalent to that S cannot be a disjoint union of two nonempty open subsets relative to S, i.e. S cannot be expressed as $S=A \cup B$, where $\emptyset \neq A=U \cap S$, and $\emptyset \neq B=V \cap S, A \cap B=\emptyset$, and U, V are open subsets of \mathbb{R}^{n}.
proof of (\Rightarrow) Suppose that $S=A \cup B$, where $\emptyset \neq A=U \cap S$, and $\emptyset \neq B=V \cap S, A \cap B=\emptyset$, and U, V are open subsets of \mathbb{R}^{n}.
$\Rightarrow A=S \backslash B=S \backslash(V \cap S)=S \backslash V=S \cap V^{\mathrm{c}}$,
and $B=S \backslash A=S \backslash(U \cap S)=S \backslash U=S \cap U^{\mathrm{c}}$.
$\Rightarrow \bar{A} \cap B=\left(S \cap V^{\mathrm{c}}\right) \cap(S \cap V)=\emptyset$,
and $\bar{A} \cap B=\left(S \cap V^{\mathrm{c}}\right) \cap(S \cap V)=\emptyset$.
Hence, S is disconnected.
proof of (\Leftarrow) Suppose that S is disconnected, and $S=S_{1} \cup S_{2}$,
where $\emptyset \neq S_{i}, i=1,2$, and $\overline{S_{1}} \cap S_{2}=\emptyset, S_{1} \cap \overline{S_{2}}=\emptyset$.
$\Rightarrow S_{1}={\overline{S_{2}}}^{\mathrm{C}} \cap S$, and $S_{2}={\overline{S_{1}}}^{\mathrm{C}} \cap S$ are disjoint nonempty open subsets relative to S, and $S=S_{1} \cup S_{2}$.

