
Advanced Calculus Midterm Exam November 24, 2010

Note: There are 8 questions with total 126 points in this exam.

1. Let {xk} be a sequence defined recursively byx1 =
√

2, andxk+1 =
√

2+xk, for k = 1,2, . . . .

(a) (10 points) Show by induction that(i) xk < 2 and(ii) xk < xk+1 for all k.

Solution: (i) Whenk = 1, x1 =
√

2 < 2.

Assume thatxk < 2. Then we havexk+1 =
√

2+xk <
√

2+2 = 2.
Thus, the argument of induction implies thatxk < 2 for all k.
(ii) Using(i) twice, we havexk+1 =

√
2+xk >

√
xk +xk =

√
2
√

xk >
√

xk
√

xk = xk for all k.

(b) (10 points) Show thatlim
k→∞

xk exists and evaluate it.

Solution: The results of(a) implies that{xk} is an increasing sequence and it is bounded from
above by2. The Monotone convergence theorem implies thatlim

k→∞
xk = x exists, and sincex =

lim
k→∞

xk+1 = lim
k→∞

√
2+xk =

√
2+x, we have0 = x2−x−2 = (x−2)(x+1) =⇒ x = 2.

2. (16 points) LetS⊂ Rn andx ∈ Rn. Show thatx ∈ S if and only if there is a sequence of points{xk} in
S that converges tox. [Hint: You may use the fact that the closure ofS is the union ofSand all its
boundary points, i.e.S= S∪∂S.]

Solution: (⇒) If x ∈ S= S∪∂S, then either
Case(i) : x ∈ S, then the sequence{xk = x}, for k = 1,2, . . . , is a sequence inS that converges tox,
or

Case(ii) : x ∈ ∂S, then, there is anxk ∈ B(
1
k
,x)∩S, for eachk = 1,2, . . . satisfying thatlim

k→∞
xk = x.

(⇐) For eachx /∈ S, there exists anr > 0 such thatB(r,x)⊂ S
c
. This implies there does not exist any

sequence of points{xk} in S that converges tox.
Remark: This equivalence says thatS∪ ∂S= S∪S′, where S′ denote the set of accumulation
points of S.

3. (a) (10 points) LetB(r,0) = {x ∈ Rn : ‖x‖ < r} be the ball of radiusr about the origin. Show that
B(r,0) is open inRn.

Solution: For eachp∈ B(r,0), we haveB(r−‖p‖, p)⊂ B(r,0) since for eachy∈ B(r−‖p‖, p)
we have‖y‖ ≤ ‖y− p‖+‖p‖< r−‖p‖+‖p‖= r, i.e. y∈ B(r,0).

Alternative proof: Since0∈ B(r,0)⊂ B(r,0), 0 is an interior point ofB(r,0).
For eachp∈ B(r,0)\{0}, by settingρ = min{‖p‖, r−‖p‖}> 0, we haveB(ρ, p)⊂ B(r,0) and
conclude thatp is an interior point ofB(r,0). Thus,B(r,0) is open since each of its points is an
interior point.

(b) (16 points) Show that ifS1 andS2 are open, so areS1∪S2 andS1∩S2.

Solution: For eachp ∈ S1∪S2, sincep is an interior point ofSi , for i = 1 or 2, there exists a
B(r, p), for somer > 0, satisfying eitherB(r, p) ⊂ Si ⊂ S1∪S2. Thus, p is an interior point of
S1∪S2, andS1∪S2 is open.
For eachp∈ S1∩S2, there existr1, r2 > 0 such thatB(r1, p) ⊂ S1, andB(rr , p) ⊂ S2. By taking
r = min{r1, r2}> 0, we haveB(r, p)⊂ S1∩S2, and conclude thatS1∩S2 is open.
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(c) (8 points) Show that for anyS⊂ Rn, Sint is open.

Solution: For eachp∈ Sint, there is anr > 0 such thatB(r, p)⊂ S. By (a), every point inB(r, p)
is an interior point ofB(r, p)⊂ S, hence, it is also an interior point ofS. Thus,B(r, p)⊂ Sint, and
this implies thatSint is open.
Alternative proof: The definition of an interior point says thatx ∈ Sint if there exists a ball
B(r,x)⊂ S. Therefore, ifx /∈ Sint, then either every ball centered atx intersects bothSandSc, or
there exists a ballB(r,x) ⊂ Sc, i.e. x∈ ∂S∪ (Sc)int. Since∂S= ∂Sc, ∂S∪ (Sc)int = ∂Sc∪ (Sc)int

is closed,Sint is open.

4. (10 points) Letf : S→ Rm be a function satisfying

|f(x)− f(y)| ≤C|x−y|λ for all x,y ∈ S,

whereC > 0 andλ > 0 are constants. Show thatf is uniformly continuous onS.

Solution: For eachε > 0, since|f(x)− f(y)| ≤C|x− y|λ for all x,y ∈ S, we chooseδ =
( ε
C

)1/λ

such that if,x,y ∈ Ssatisfying that|x−y|< δ , then|f(x)− f(y)| ≤C|x−y|λ < Cδ = ε. Hence,f is
uniformly continuous onS.

5. (16 points) Show thatf : Rn → Rk is continuous (in the sense ofε-δ definition) if and only if for each
open subsetU in Rk the setf−1(U) = {x ∈ Rn : f(x) ∈U} is open.

Solution: (⇒) Let U be an open subset inRk and p be a point in f−1(U). Given ε > 0, since
B(ε, f(p))∩U is open, there exists a ballB(η , f(p))⊂ B(ε, f(p))∩U, for someη > 0. The continuity
of f at p implies that there is a ballB(δ , p), for someδ > 0, such thatf(B(δ , p)) ⊂ B(η , f(p)) ⊂
B(ε, f(p))∩U ⊂U. This implies thatB(δ , p)⊂ f−1(U), andf−1(U) is open .
(⇐) For eachp∈Rn, and eachε > 0, since the setB(ε, f(p)) is open inRk, f−1(B(ε, f(p))) is an open
set containingp. There exists aδ > 0 such thatB(δ , p)⊂ f−1(B(ε, f(p))), i.e. f(B(δ , p))⊂B(ε, f(p)),
andf is continuous atp.

6. (10 points) Suppose thatf : Rn → Rm is continuous onU ⊂ Rn andg : Rm → Rk is continuous on
f(U)⊂ Rm. Show that the composite functiong(f) : Rn→ Rk is continuous onU.

Solution: For eachp∈U, and anyε > 0, sinceg is continuous atf(p), there existsδ1 > 0, such that
if y∈ f(U) satisfying that|y− f(p)| < δ1, then|g(y)−g(f(p))| < ε. Also, sincef is continuous atp,
there exists aδ > 0, such that ifx∈U satisfying that|x− p|< δ , then|f(x)− f(p)|< δ1 which implies
that|g(f(x))−g(f(p))|< ε, i.e. the composite functiong(f) is continuous at eachp∈U.
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7. (10 points) LetSbe a compact subset ofRn and letf : S→Rm be continuous at every point ofS. Show
that the image set

f(S) = {f(x) : x ∈ S}
is also compact.

Solution: Suppose{yk} is a sequence inf(S). This implies that, for eachk, there is anxk ∈ S such
thatyk = f(xk). SinceSis compact, by the Bolzano-Weierstrass theorem,{xk} has a convergent subse-
quence{xk j} that converges to a pointa∈ S. Sincef is continuous ata, lim

j→∞
yk j = lim

j→∞
f(xk j ) = f(a) ∈

f (S). Thus, every sequence inf(S) has a subsequence whose limit lies inf(S). This implies thatf(S)
is compact.

8. (10 points) LetSbe a connected subset inRn. Show that the closure ofS is also connected.

Solution: Suppose thatS is disconnected and(U,V) is a disconnection ofS. Suppose thatU ∩S 6= /0
andV ∩S 6= /0, then it is easy to see that(U ∩S,V ∩S) is a disconnection ofS. This contradicts
to that S is connected. Therefore, eitherU ∩S= /0, or V ∩S= /0. Assume thatV ∩S= /0, since
S∪ ∂S= S= U ∪V, this implies thatV ⊂ ∂S, andU = S. But, this implies thatU ∩V = S∩V 6= /0
which contradicts to that(U,V) is a disconnection ofS. It is easy to see thatU ∩S= /0 will also lead
to a contradiction. Therefore,S is connected.
Note: (1) In general, the converse is not true. e.g. LetS= [0,1)∪ (1,2). ThenS= [0,2] is connected
while S is not.
(2) A subsetA⊂ S is said to beopen relative to the set Sif there exists an open setU ⊂Rn such that
A = U ∩S.
The definition of connectedness ofS⇐⇒ is equivalent to thatS cannot be a disjoint union of two
nonempty open subsets relative toS, i.e. Scannot be expressed asS= A∪B, where/0 6= A = U ∩S,
and /0 6= B = V ∩S, A∩B = /0, andU,V are open subsets ofRn.
proof of (⇒) Suppose thatS= A∪B, where/0 6= A = U ∩S, and /0 6= B = V ∩S, A∩B = /0, andU,V
are open subsets ofRn.
⇒ A = S\B = S\ (V ∩S) = S\V = S∩Vc,
andB = S\A = S\ (U ∩S) = S\U = S∩Uc.
⇒ A∩B =

(
S∩Vc)∩ (

S∩V
)

= /0,

andA∩B =
(
S∩Vc)∩ (

S∩V
)

= /0.
Hence,S is disconnected.
proof of (⇐) Suppose thatS is disconnected, andS= S1∪S2,
where/0 6= Si , i = 1,2, andS1∩S2 = /0, S1∩S2 = /0.
⇒ S1 = S2

c∩S, andS2 = S1
c∩Sare disjoint nonempty open subsets relative toS, andS= S1∪S2.
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